

Team 18: The Centennial Calendar

Design Review 4

Team Introduction

Zachary W. Brower Team Leader

Jacob W. Williams Lead ESE

Financial Lead

Alyna B. Segura-Sanchez Lead ME

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

PROJECT OVERVIEW

Zachary Brower

Initial Project Summary

- Create a calendar that runs continuously for 100 years
 - Must utilize all-mechanical workings
 - No electrical input power
 - Zero maintenance required

Zachary Brower

Adjusted Project Summary

- Create a calendar that runs continuously for 100 years
 - Must utilize all-mechanical workings
 - No electrical input power
 - Annual maintenance allowed

Zachary Brower

5

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Zach

Adjusted Project Scope

- Create an operational 100-year mechanical calendar prototype out of inexpensive materials that accounts for the day, month and year, with annual maintenance.
- The prototype developed is to simulate proper date keeping and will be utilized by future senior design teams to improve upon.

Zachary Brower

Adjusted customer needs

- Mechanism powered mechanically.
- Mechanism accounts for leap years and nonleap years.
- Internal workings visible from a distance.
- Usage of cost-effective materials while not sacrificing quality.
- Compact mechanism that is self-sufficient for a year at a time.

Zachary Brower

Target Catalog

Table 1: Adjusted Target Metrics

Metric	<u>Measure</u>	<u>Target</u>
Max allowable error	Time	1 day/year
Life span of mechanism	Time	100 years
Weather-proof rating	Durability	IP-55
Maintenance interval	Reproducibility	Annual
Max mechanism size	Dimensions	Door way
Furthest distance the date is legible	Visibility	3 meters
Organized design	Aesthetics	N/A
Amount of movements per day	Quantity	1
Tamper-proof rating	Durability	TL-40

Zachary Brower

Michael Patrick

OUR PROTOTYPE

The Clock

➤ 400 Day Anniversary Clock

All-mechanical, torsional pendulum timekeeper

Runs for around 400 days on a full wind

Figure 1: Kundo 400 Day Anniversary Clock

Michael Patrick

The Clock (cont.)

High quality, affordable clock

Great device for us to analyze

≻ Cons:

- Most range from 65-75 years old
- Requires substantial maintenance when components fail

Figure 2: Torsional pendulum of Kundo 400 Day Anniversary Clock

Michael Patrick

Energy System

- Bellows modeled after those found on an Atmos clock
- Slight changes in temperature and pressure cause ethyl chloride gas to expand
- Utilizes most consistent environmental changes

Michael Patrick

Return and small springs Barrel with mainspring Bellows Idler puller Arbor 1 End-cap Arbor 0 Click and ratchet Winding drum Figure 3: Atmos bellows 200 180 160 **Labor Pressure (kPa)** 140 150 150 Liquid Vapor 100 Patm 80 15 25 10 20 Temperature (C) Figure 4: P-T graph of ethyl chloride

Energy System (cont.)

Temperature changes

- The bellows on an Atmos clock generate about 4 days of power per °C
- Minimum temperature change in Tallahassee on average is 15 °F (~8.34 °C)
- Atmos clock in Tallahassee will produce at least 36.1 days of power on average

Figure 5: Temperature fluctuations per month in Tallahassee

Michael Patrick

Energy System (cont.)

- Air temperature vs. atmospheric pressure power contribution
 - 37 mmHg (1.46 inHg) is a comparable to a temperature change of 1 degree C
 - Max average pressure change = 1.45 inHg, min average pressure change = 0.33 inHg
 - Pressure differential will power Atmos clock between 4.33 and 0.953

Figure 6: Pressure fluctuations per month in Tallahassee

Michael Patrick

Date Display

Had original display design hashed out

Ordered a nice, wooden "clock"

Rolling with the mistakes

Figure 7: Preliminary display design

Michael Patrick

Date Display (cont.)

Now utilizing the Clayton Boyer Perpetual Calendar as the core of the display

Will add an extra gear to track the years

Figure 8: Clayton Boyer Perpetual Calendar

Michael Patrick

Date Display (cont.)

Calendar will be made from acrylic

Reduces weathering effects seen on wood

Allows for lighter design, less power needed

Michael Patrick

Figure 9: Clayton Boyer Perpetual Calendar AutoCAD drawing

Prototype Simulation

Once complete, the prototype will be set to run at an accelerated pace

>Allows for flaws in the design to be found

Lets future teams analyze our design to make further improvements

Michael Patrick

Overview

Current Focus

- Time-keeping mechanism and date display
- Energy system design
- Connection of the subsystems
- Building Prototype
 - Ordering Parts
 - Setting up CAD files
 - Found available waterjet

Zachary Brower

Gantt Chart

Figure 10: Gantt Chart

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Zachary Brower

References (ADD NEW ONES)

- User, A. J. (2013, October 18). I found this helpful answer from a clock repair expert on JustAnswer.com. Retrieved November 08, 2017, from https://www.justanswer.com/clockrepair/8295n-just-acquired-atmos-clock-leveled-released.html
- Bimetallic strip. (2017, November 02). Retrieved November 02, 2017, from https://en.wikipedia.org/wiki/Bimetallic_strip
- Putnam, C. S. (2016, February 20). The Mechanical Battery. Retrieved November 02, 2017, from https://www.damninteresting.com/the-mechanical-battery/
- The Shifting-Mass Overbalanced Wheel. (n.d.). Retrieved November 02, 2017, from https://www.lhup.edu/~dsimanek/museum/overbal.htm
- The Shifting-Mass Overbalanced Wheel. (n.d.). Retrieved November 02, 2017, from https://www.lhup.edu/~dsimanek/museum/overbal.htm
- Sandru, O. (2015, August 26). Fan Case Free Energy Magnet Motors: How They Fake Them. Retrieved November 02, 2017, from https://www.greenoptimistic.com/fan-magnetmotors-fake/#.WfuxmWhSxPY

Thank you for your time.
ANY QUESTIONS?

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

BACKUP SLIDES

Ethyl Chloride Gas

- At room temp. and atmospheric pressure, ethyl chloride is a vapor
- Bellows is at min. volume at vapor/liquid point (boiling point)
- Most of the gas is a vapor at atmospheric pressure, so the increase in pressure may follow the ideal gas law, PV = nRT

Pressure-temperature graph of ethyl chloride

Bellows Motion

- Pressure of ethyl chloride in the bellows creates a force, $f_b = a_b p_b$
- Two springs oppose bellow's force to recompress it, f_s = k_sx
- Winding drum picks up slack when bellows expands
- When the bellows contracts, it pulls the winding chain and winds the mainspring through a click and ratchet system

Atmos winding system

Mainspring

- Mainspring stores energy produced by bellows to drive the clock and the display
- Drive torque expressed as: $\tau = \frac{Eb_{ms}h_{ms}^{3}(\theta \theta_{0})}{12L} + \tau_{0} \text{ where}$ E = modulus of elasticity, $b_{ms} = \text{mainspring width,}$ $h_{ms} = \text{mainspring thickness,}$ L = spring length

Mainspring example

- $\succ \tau_0 = Fd = (ma)d$
- > Determine τ_0 by torqueing the mainspring

Mainspring Torque Calculation

- $\succ \tau_0 = Fd = (ma)d$
- Make a jig comprised of a clamp to hold the mainspring
- Attach rod to mainspring
- Fully load mainspring
- Measure distance that a mass holds rod in the equilibrium position (horizontal)
- Plot torque for every 360 degree unwinding

Mainspring torque

Clock Motion

Use gear ratios to determine how long the clock can run

► Gear ratio,
$$R = \frac{N_{out}}{N_{in}}$$

- \succ In, out denotes input and output motions
- Need number of teeth for each gear in the gear train
- Determine how long the great wheel takes for a full rotation
- > runtime = time to turn great wheel one rev *
 number of revs to fully wind mainspring

Torsional Pendulum

- The time base of the clock regulated by simple harmonic motion
- > The natural frequency is expressed by, $\omega_n = \sqrt{\frac{k}{I}}$ where $I = mr^2$
- > The period is, $T = \frac{2\pi}{\omega_n}$ where T = 60s
- $\succ k$ can be determined when the inertia is determined analytically
- Maintaining a 60s period is important because it keeps the timing of the clock

Torsional pendulum

Energy Analysis

Power consumption

Determine the average torque produced

•
$$W = \tau \theta = \tau_{mean} \frac{2\pi}{rev}$$

• Power =
$$\frac{W}{t}$$

•
$$P = \frac{W}{(time \ to \ turn \ great \ wheel \ 1 \ rev)}$$

- For reference, an Atmos clock's average rate of power consumption is about 0.0327 μW
- Losses due to pendulum, gear train, and escapement

- Temperature changes enough to power clock?
 - From Atmos experiment:
 - At room temperature, the bellows moved 1.63 mm/C (0.036 in/F) on average
 - Circumference of chain winder is 34 mm

•
$$\left(\frac{360^\circ}{34 \ mm}\right)\left(\frac{1.63 \ mm}{^\circ C}\right) = \frac{17.3^\circ}{^\circ C}$$

55:18 gear ratio from chain winder to mainspring

•
$$\left(\frac{17.3^{\circ}}{^{\circ}\mathrm{C}}\right)\left(\frac{55}{18}\right) = \frac{52.9^{\circ} \, great \, whee}{^{\circ}\mathrm{C}}$$

For Atmos, full turn of great wheel takes 29.5 days

•
$$\left(\frac{52.9^{\circ}}{^{\circ}\mathrm{C}}\right)\left(\frac{29.5 \ days}{360^{\circ}}\right) = \frac{4.33 \ days}{^{\circ}\mathrm{C}}$$

- Temperature changes enough to power clock?
 - From Atmos experiment:
 - At room temperature, the bellows moved 1.63 mm/C (0.036 in/F) on average
 - Circumference of chain winder is 34 mm

•
$$\left(\frac{360^\circ}{34 \ mm}\right)\left(\frac{1.63 \ mm}{^\circ C}\right) = \frac{17.3^\circ}{^\circ C}$$

55:18 gear ratio from chain winder to mainspring

•
$$\left(\frac{17.3^{\circ}}{^{\circ}\mathrm{C}}\right)\left(\frac{55}{18}\right) = \frac{52.9^{\circ} \, great \, whee}{^{\circ}\mathrm{C}}$$

For Atmos, full turn of great wheel takes 29.5 days

•
$$\left(\frac{52.9^{\circ}}{^{\circ}\mathrm{C}}\right)\left(\frac{29.5 \ days}{360^{\circ}}\right) = \frac{4.33 \ days}{^{\circ}\mathrm{C}}$$

Temperature changes (cont.)

- The bellows on an Atmos clock generates 4.33 days of power per degree C
- Minimum temperature change in Tallahassee on average is 15 degrees F (~8.34 degrees C)
- Therefore, an Atmos clock in Tallahassee will produce at least 36.1 days of power on average

Temperature (F)

- Air temperature vs. atmospheric pressure power contribution
 - 37 mmHg is a comparable to a temperature change of 1 degree C
 - 37 mmHg = 1.46 inHg
 - Maximum average pressure change in Tallahassee is 1.45 inHg
 - Minimum average pressure change is 0.33 inHg
 - At best, pressure differential will power Atmos clock for 4.33 days
 - At worst, pressure differential will power Atmos clock for 0.953 days

Tallahassee Max and Min Pressure 2017 31 ^oressure (inHg) 30.5 30 29.5 29 28.5 Max pressure Jan March April May eptmember October November December January June MUL AUBUST Low pressure Month

- Average temperature differential yearly = 21.5 degrees F = 12.0 degrees C
- Average pressure differential yearly = 2.64 inHg

$$\blacktriangleright \left(\frac{4.33 \text{ days}}{^{\circ}\text{C}}\right)(12.0 \text{ °C}) = 51.96 \text{ days of power}$$

$$\succ \left(\frac{1.46 \text{ inHg}}{^{\circ}\text{C}}\right) \left(\frac{^{\circ}\text{C}}{4.33 \text{ days}}\right) \left(\frac{1}{2.64 \text{ inHg}}\right) =$$

0.1277 days of power

- Pressure differential only constitutes 0.25% of power supplied
- Note: as long as power supplied per month exceeds the length of the month, power will not run out

